
ELLIPTIC FUNCTIONS AND THETA FUNCTIONS

LECTURE NOTES FOR NOV.22, 24, 2016

Elliptic functions are generalizations of trigonometry functions. While
trigonometry functions are periodic functions with one period, the el-
liptic functions are meromorphic functions on the complex plane with
two periods that are not R-colinear.

Historically, elliptic functions were first discovered by Niels Henrik
Abel as inverse functions of elliptic integrals, and their theory was im-
proved by Carl Gustav Jacobi; these in turn were studied in connection
with the problem of the arc length of an ellipse, whence the name de-
rives. Jacobi’s elliptic functions have found numerous applications in
physics, and were used by Jacobi to prove some results in elementary
number theory. A more complete study of elliptic functions was later
undertaken by Karl Weierstrass, who found a simple elliptic function
in terms of which all the others could be expressed. Besides their
practical use in the evaluation of integrals and the explicit solution of
certain differential equations, elliptic functions are at the crossroads of
several branches of pure mathematics. The purpose of this note is to
give a brief introduction to elliptic functions and related functions –
theta functions. One of our exercises emphasizes their relation with
field theory and Galois theory.

Section 1 recalls some basic theorems in complex analysis and defini-
tion of meromorphic functions. Section 2 gives the definition of elliptic
functions and introduce the Weierstrass’s construction. Section 3 gives
the definition of theta functions and shows that how to construct ellip-
tic functions using theta functions.

1. Meromorphic Functions

Let D be a connected open set in C, a complex valued f(z) defined
on D is called an analytic function if f ′(z) exists everywhere in D.
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Recall f ′(z) is the complex derivative defined by

lim
δ→0

f(z + δ)− f(z)

δ
,

where δ goes to 0 at all the directions in C.

Analytic functions have good properties that general smooth func-
tions don’t have.

Theorem 1.1. If F (z) is an analytic function on D, C is a simple
counter-clockwise contour in D, then∫

C

f(z)dz = 0.

For a point a in the domain enclosed by C,

1

2πi

∫
C

f(z)

z − a
dz = f(a).

Theorem 1.1 imply the the Theorems 1.2, 1.3, 1.4, 1.5 below.

Theorem 1.2. If f(z) is an analytic function on D, if |f(z)| has a
local maximal at some point in D, then f(z) is a constant function.

Theorem 1.3. The derivative f (n)(z) of arbitrary order n exists, and

1

2πi

∫
C

f(z)

(z − a)n+1
dz =

1

n!
f (n)(a).

Theorem 1.4. If f(z) is an analytic function on D, for every a ∈ D,
the Taylor expansion at a

f(a) + f ′(a)(z − a) +
f ′′(a)

2!
(z − a)2 + · · ·+ f (n)(a)

n!
(z − a)n + . . .

converges absolutely and uniformly on any closed disc |z−a| ≤ r inside
D.

Theorem 1.5. If the zero points {a | f(a) = 0} has a limit point in
D, then f(z) = 0.

A meromorphic function on D is a map f : D → C ∪ {∞} such
that
(1). If f(a) = ∞, then a is an isolated point in D, and there exists a
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positve integer n, such that limz→a(z − a)nf(z) exists and is non-zero.
(Such a is called the pole of f(z), n is called the order of the pole).
(2). By (1), D−f−1(∞) is an open set, f(z) is analytic on D−f−1(∞).

Example 1. A rational function is a meromorphic function on C of
the form

f(z) =
p(z)

q(z)

where p(z) and q(z) are polynomials, we may assume p(z) and q(z)
have no common zeros. a is pole of f(z) iff q(a) = 0, its order is the
multiplicity of a as a zero of q(z).

Example 2. f(z) = 1
ez−1

is a meromorphic function on C, whose poles
are 2πiZ.

For a meromporphic function f(z) on D, if a ∈ D is a pole, f(z) has
a Laurent power series expansion at a

c−n(z − a)−n + · · ·+ c−1(z − a)−1 +
∞∑
k=0

ck(z − a)k

where c−n 6= 0.

Proposition 1.6. The space of all analytic functions on D is an
integral domain. The space of all meromorphic functions on D is a
field.

2. Elliptic Functions

Definition. An elliptic function is a function f(z) meromorphic on C
for which there exist two non-zero complex numbers ω1 and ω2 with
ω1

ω2
/∈ R, such that

f(z) = f(z + ω1), f(z) = f(z + ω2)

for all z ∈ C.

Denoting the ”lattice of periods” by

Λ = {mω1 + nω2 | m,n ∈ Z} .
It is clear that the condition

f(z) = f(z + ω1), f(z) = f(z + ω2)
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is equivalent to
f(z) = f(z + ω)

for all ω ∈ Λ.

We denote M(Λ) the space of all elliptic functions with lattice of
periods Λ.

Proposition 2.1. M(Λ) is a field.

Just as a periodic function of a real variable is defined by its values
on an interval, for example, a real variable periodic function function
f(x) with period a ( f(x+a) = f(x)) is determined by its value on the
interval [0, a], an elliptic function with periods ω1 and ω2 is determined
by its values on a fundamental parallelogram

{uω1 + tω2 | 0 ≤ u, t ≤ 1},
which then repeat in a lattice. If such a doubly periodic function f(z)
is analytic on whole C, then |f(z)| achieves on local maximum on the
fundamental parallelogram, which is an absolute maximum by double
periodicity, so f(z) is a constant by Theorem 1.2. This proves

Theorem 2.1. If an elliptic function f(z) is analytic, then it is a
constant function.

With the definition of elliptic functions given above, the Weierstrass
elliptic function ℘ (z) is constructed as follows: given a lattice Λ as
above, put

℘ (z) =
1

z2
+

∑
ω∈Λr{0}

(
1

(z − ω)2 −
1

ω2

)
To prove the convergence, we notice that on any compact disk defined
by |z| ≤ R, and for any |ω| > 2R, one has∣∣∣∣ 1

(z − ω)2 −
1

ω2

∣∣∣∣ =

∣∣∣∣ 2ωz − z2

ω2 (ω − z)2

∣∣∣∣ =

∣∣∣∣∣ z
(
2− z

ω

)
ω3
(
1− z

ω

)2

∣∣∣∣∣ ≤ 10R

|ω|3

This implies that the series converges uniformly on |z| ≤ R, so we have
a meromorphic function on C with poles on the lattice Λ.

The prove ℘ (z) has periods Λ, we notice that

℘′ (z) = −2
∑
ω∈Λ

1

(z − ω)3
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has periods Λ, so we have

℘(z + ω)− ℘(z) = C

is a constant, put z = −ω
2
, we see that ℘(ω

2
)−℘(−ω

2
) = C, it is obvious

that ℘(z) is even function, so C = 0. This proves ℘(z) is an elliptic
function with period Λ.

By writing ℘ as a Laurent series and explicitly comparing terms, one
may verify that it satisfies the relation

(℘′ (z))
2

= 4 (℘ (z))3 − g2℘ (z)− g3 (2.1)

where

g2 = 60
∑

ω∈Λr{0}

1

ω4

and

g3 = 140
∑

ω∈Λr{0}

1

ω6
.

This means that the pair (℘, ℘′) parametrize an elliptic curve

y2 = 4x3 − g2x− g3.

Theorem 2.2. The field M(Λ) is generated by ℘(z) and ℘′(z) over C
subject to the relation (2.1)

3. Theta Functions

The Jacobi theta function (named after Carl Gustav Jacobi) is a
function defined for two complex variables z and τ , where z can be
any complex number and τ is confined to the upper half-plane, which
means it has positive imaginary part. It is given by the formula

ϑ(z; τ) =
∞∑

n=−∞

exp(πin2τ + 2πinz) = 1 + 2
∞∑
n=1

(
eπiτ
)n2

cos(2πnz)

If τ is fixed, this becomes a Fourier series for a periodic entire func-
tion of z with period 1; in this case, the theta function satisfies the
identity



ELLIPTIC FUNCTIONS AND THETA FUNCTIONS 6

ϑ(z + 1; τ) = ϑ(z; τ). (3.1)

The function also behaves very regularly with respect to its quasi-
period τ :

ϑ(z + τ ; τ) = exp(−πiτ − 2πiz)ϑ(z; τ). (3.2)

(3.1) and (3.2) implies that for arbitrary integers a, b,

ϑ(z + a+ bτ ; τ) = exp(−πib2τ − 2πibz)ϑ(z; τ).

Theorem 3.1. If 4n real numbers ak, bk, ck, dk (k = 1, 2, . . . , n) satisfy
the conditions

∑n
k=1 ai −

∑n
k=1 ci ∈ Z and

∑n
k=1 bk =

∑n
k=1 dk, then

ϑ(z + a1 + b1τ ; τ)ϑ(z + a2 + b2τ ; τ) · · · · · ϑ(z + an + bnτ ; τ)

ϑ(z + c1 + d1τ ; τ)ϑ(z + c2 + d2τ ; τ) · · · · · ϑ(z + cn + dnτ ; τ)

is an elliptic function of period lattice Z + Zτ .

Exercises.

Problem 1. This problem discusses an analog of Weierstrass’ con-
struction for trigonometric functions. Prove that for each integer n ≥ 2,
the series

fn(z) =
∑
k∈Z

1

(z − k)n

converges for z /∈ Z and defines a periodic meromorphic function on C
with period Z. What is the relation of fn(z) with tan(πz) ?

Problem 2. Prove that

ϑ(z; τ) =
∞∏
m=1

(
1− e2mπiτ

) [
1 + e(2m−1)πiτ+2πiz

] [
1 + e(2m−1)πiτ−2πiz

]
.

From this, prove that as function of z (with fixed τ), ϑ(z; τ) has only
simple zeros at 1

2
+ 1

2
τ + m + nτ (m,n ∈ Z). Find all the poles and

zeros of the elliptic function in Theorem 3.1.

Problem 3*. Suppose the lattice Λ1 ⊂ Λ2, prove that
(1). M(Λ2) is a subfield of M(Λ1).
(2). Prove that the field extension M(Λ2) ⊂ M(Λ1) is a finite Galois
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extension.
(3). Prove that the Galois group G(M(Λ1)/M(Λ2)) is isomorphic to
the quotient group Λ2/Λ1.

Problem 4*. Write ℘(z) for Λ = Z+Zτ as a product of theta functions
as in Theorem 3.1. hint: you need Problem 2.

Problem 5*. Prove the converge of Theorem 3.1, i.e, every non-zero
elliptic function of period lattice Z + Zτ can be written as a quotient
of products of shifted theta functions as in Theorem 3.1.
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